|
Метод левых прямоугольников
Разделим отрезок [a; b] на n равных частей, т.е. на n элементарных отрезков. Длина каждого элементарного отрезка . Точки деления будут: x0=a; x1=a+h; x2=a+2×
h, ... , xn-1=a+(n-1)×
h; xn=b. Эти числа будем называть узлами. Вычислим значения функции f(x) в узлах, обозначим их y0, y1, y2, ... , yn. Cтало быть, y0=f(a), y1=f(x1), y2=f(x2), ... , yn=f(b). Числа y0, y1, y2, ... , yn являются ординатами точек графика функции, соответствующих абсциссам x0, x1, x2, ... , xn. Площадь криволинейной трапеции приближенно заменяется площадью многоугольника, составленного из n прямоугольников. Таким образом, вычисление определенного интеграла сводится к нахождению суммы n элементарных прямоугольников.
Формула левых прямоугольников:
|
|