Рассматриваемые ранее методы называются детерминированными, то есть лишенными элемента случайности.
Методы Монте–Карло (ММК) – это численные методы решения математических задач с помощью моделирования случайных величин. ММК позволяют успешно решать математические задачи, обусловленные вероятностными процессами. Более того, при решении задач, не связанных с какими-либо вероятностями, можно искусственно придумать вероятностную модель (и даже не одну), позволяющую решать эти задачи. Рассмотрим вычисление определенного интеграла
(1)
При вычислении этого интеграла по формуле прямоугольников интервал [
a, b] разбиваем на N одинаковых интервалов, в серединах которых вычислялись значения подынтегральной функции. Вычисляя значения функции в случайных узлах, можно получить более точный результат:
(2)
(3)
Здесь γ
i - случайное число, равномерно распределенное на интервале
[0, 1]. Погрешность вычисления интеграла ММК ~ , что значительно больше, чем у ранее изученных детерминированных методов.
На рис. 1 представлена графическая реализация метода Монте-Карло вычисления однократного интеграла со случайными узлами (2) и (3).
Рис. 1.
Интегрирование методом Монте-Карло (1-й случай)
Однако при вычислении кратных интегралов детерминированными методами оценка погрешности перерастает в задачу порой более сложную, чем вычисление интеграла. В то же время погрешность вычисления кратных интегралов ММК слабо зависит от кратности и легко вычисляется в каждом конкретном случае практически без дополнительных затрат.
Рассмотрим еще один метод Монте-Карло на примере вычисления однократного интеграла:
(4)
Рис. 2.
Интегрирование методом Монте-Карло (2-й случай)
Как видно на рис. 2, интегральная кривая лежит в единичном квадрате, и если мы сумеем получать пары случайных чисел, равномерно распределенных на интервале [0, 1], то полученные значения (γ1, γ2) можно интерпретировать как координаты точки в единичном квадрате. Тогда, если этих пар чисел получено достаточно много, можно приблизительно считать, что
. Здесь S – число пар точек, попавших под кривую, а N – общее число пар чисел.