|
Постановка задачи Коши
Определение. Задача нахождения частного решения дифференциального уравнения, удовлетворяющего заданному начальному условию, называется задачей Коши.
Из всех разделов математического анализа, дифференциальные уравнения являются одним из самых важных по своим приложениям, ибо решая дифференциальное уравнение, т.е. находя некоторую функцию, мы устанавливаем закон, по которому происходит то или иное явление или процесс.
Определение. Решить задачу Коши для уравнения y'=f(x,y) (6.1) – это значит найти решение уравнения y'=f(x,y) в виде функции у(х), удовлетворяющей начальному условию у(х0)=у0
Геометрически это означает, что требуется найти интегральную кривую у=у(х), проходящую через заданную точку M0(x0,y0) при выполнении равенства (6.1).
В классическом анализе разработано немало приемов нахождения решений дифференциальных уравнений через элементарные функции. Между тем весьма часто при решении практических задач эти методы оказываются либо совсем беспомощными, либо их решение связывается с недопустимыми затратами усилий и времени.
Например дифференциальное уравнение у'=у 2+х2 не имеет аналитического решения.
По этой причине для решения задач практически созданы методы приближенного решения дифференциальных уравнений.
Чаще всего при численном решении дифференциальных уравнений получают решение в виде таблицы, либо строится график искомой функции (что почти равносильно).
|
|